organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Chen Yan,* Hai-Bo Wang and Zhi-Qian Liu

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.053 wR factor = 0.152 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[3-(2-Methylphenyl)-1,2,4-oxadiazol-5-yl]methanol

The crystal structure of the title compound, $C_{10}H_{10}N_2O_2$, is characterized by an $O-H \cdots N$ hydrogen bond.

Received 14 February 2006 Accepted 6 March 2006

Comment

1,2,4-Oxadiazoles are important five-membered heterocycles. Some derivatives of 1,2,4-oxadiazoles have anti-inflammatory (Nicolaides *et al.*, 1998) and antipicornaviral (Romero, 2001) properties. The molecular structure of the title compound is shown in Fig. 1, with selected geometry in Table 1. The crystal structure is characterized by an $O-H\cdots N$ hydrogen bond (Table 2).

Experimental

Hexamethylenetetramine (90 mmol) was dissolved in acetic acid (70 ml) and water (70 mmol). 5-Chloromethyl-3-(2-methylphenyl)-1,2,4-oxadiazole (30 mmol) was added to this mixture. The resulting mixture was refluxed for 3 h. After cooling and filtering, crude (I) was obtained. Pure (I) was obtained by crystallization from a mixture of ethyl acetate (6 ml) and petrolum ether (6 ml). Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an ethanol solution.

Crystal data

$C_{10}H_{10}N_2O_2$ $M_r = 190.20$ Monoclinic, P_{21}^2/n a = 7.529 (2) Å b = 14.307 (3) Å c = 8.799 (3) Å $\beta = 106.39$ (3)° V = 909.3 (5) Å ³ Z = 4	$D_x = 1.389 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless $0.30 \times 0.20 \times 0.20 \text{ mm}$
Data collection Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.971, T_{max} = 0.980$ 1896 measured reflections 1764 independent reflections 1242 reflections with $I > 2\sigma(I)$	$R_{int} = 0.019$ $\theta_{max} = 26.0^{\circ}$ $h = 0 \rightarrow 9$ $k = 0 \rightarrow 17$ $l = -10 \rightarrow 10$ 3 standard reflections every 200 reflections intensity decay: none

© 2006 International Union of Crystallography All rights reserved

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.08P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.053$	+ 0.3P]
$wR(F^2) = 0.152$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.97	$(\Delta/\sigma)_{\rm max} = 0.002$
1764 reflections	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
128 parameters	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
-	Extinction coefficient: 0.0073 (10)

Table 1

Selected geometric parameters (Å, °).

O1-C9	1.331 (3)	N1-C8	1.302 (3)
O1-N1	1.414 (3)	N2-C9	1.285 (3)
O2-C10	1.404 (3)	N2-C8	1.378 (3)
C9-O1-N1	106.35 (17)	N2-C8-C7	121.91 (18)
C8-N1-O1	103.61 (17)	N2-C9-O1	113.1 (2)
C9-N2-C8	103.70 (18)	N2-C9-C10	129.1 (2)
N1-C8-N2	113.27 (19)	O1-C9-C10	117.8 (2)
N1-C8-C7	124.8 (2)	O2-C10-C9	110.3 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2A\cdots N2^{i}$	1.00	1.92	2.858 (3)	154
Commentary and as (i)		- 1 2		

Symmetry code: (i) -x + 1, -y + 1, -z + 3.

All H atoms were positioned geometrically and refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ or } 1.5 U_{eq}(methyl C)]$ using a riding model with C–H = 0.93–0.97 Å. The O–H distance was set at 1.00 Å and the C–O torsion angle was refined.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms &

Figure 1

A view of the molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.